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Abstract

In this paper, I generalise the logical concept of compatibility into a broader 
set-theoretical one. The basic idea is that two sets are incompatible if they 
produce at least one pair of opposite objects under some operation. I formalise 
opposition as an operation ′ ∶ E Ð→ E, where E is the set of opposable 
elements of our universe U, and I propose some models. From this, I define a 
relation C ∶ ℘U × ℘U × ℘U℘U, which has (mutual) logical compatibility as its 
more natural interpretation.
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3.1. Opposition

That some set is compatible with another depends on whether they produce 
a pair of opposite objects. If we assume that any x is the opposite of its own 
opposite, an operation of opposition ′ ∶ E Ð→ E has to be involutory:

Axiom 3.1. x = x′′,

from where we obtain the following corollaries:

Corollary 3.2. If x′ = y′, then x = y.

Corollary 3.3. If x′ = y, then x = y′.

The first means that ′ is injective and, since ′ is its own inverse function, we 
can interpret 3.3 as saying that ′ is surjective, which establishes that ′ is bijective.

Intuitively, x′ denotes the opposite of x, i.e., an operation of opposition trans-
forms an element of E into its opposite. Since it is not necessary that all elements
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Figure 3.1: The chess table.

of our universe U have an opposite, the domain of this operation is restricted to E,
which is accordingly interpreted as the set of opposable elements of U.

These properties, however, are not sufficient for completely characterising the
concept of opposition. Some additional properties depend on the introduction of
other operations. In fact, there is room for debating whether some of these prop-
erties are adequate or not. For example, we might say that the white bishop in h1
(see figure 3.1) is opposed to the black rook in a8, but not the other way around.
Following the same intuition, we can also state that this rook is opposed to the
white knight in a1 (which is opposed to the black queen in b3?).

This understanding of the concept of opposition may be fairly considered mis-
taken, but it shows to some extent that the properties of our formalisation depend
on what notion of opposition are we trying to capture. However, I do not pretend
to capture all possible senses of opposition in this short paper. In fact, I will add
a further restriction to this concept by requiring that ′ be irreflexive, preventing
every x from being its own opposite:

Postulate 3.4. x ≠ x′.

3.2. Interpretations of ′

Several mathematical functions are relations of opposition. For example, clas-
sical negation satisfies all the previous properties. Furthermore, if we take our
domain U to be the set of wffs of a language, we have that E = U. If p and q are
wffs, we may take p = q to mean that p and q have the same logical value.

The inverse operation of group theory is also an operation of opposition.
This implies that the additive inverse (x′ ↦ −x) and the multiplicative inverse
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(x′ ↦ 1/x) are operations of opposition in the relevant domains. Clearly, this also
holds for the inverse operation of any model of group theory.

A remarkable interpretation is the absolute complement operation (A′ ↦AC)
of set theory, which means that we can also have properties in the domain of ′.
For example, if P is in the domain of ′, we may define P′ as the predicate in
whose extension are all x such that ¬Px; that is, the extension of P′ is the absolute
complement of the set corresponding to the extension of P.

We can alternatively interpret P′ as the one antonymous property of P, which
is the one antonymous property of P′. The set of opposable elements would then
be constituted only by properties that could appear in a pair of reverse antonyms
such as good/bad, beautiful/ugly, dark/bright, and the like.

In the first approach, if P stands for “x is transparent”, P′ would stand for
“x is opaque”, since all non transparent things are opaque (assuming our universe
consists of normal-sized physical objects). In the second approach, if P stands for
“x is dark”, P′ could stand for “x is bright”.

3.3. The Relation C

Classical compatibility can be defined from opposition as a three-place relation
C ∶ ℘U × ℘U × ℘U℘U satisfying:38

Definition 3.5. C(A,B)∗ iff x,x′ ∈ (A ∪B)∗, for no x.

The expression C(A,B)∗ is read “A is compatible with B with respect to ∗,”
or “A is ∗-compatible with B,” where A,B ∈ ℘U and ∗ ∈ ℘U℘U. Accordingly,
we say that A is ∗-incompatible with B iff not C(A,B)∗. The relation C is sym-
metric in the sense that:

Theorem 3.6. C(A,B)∗ iff C(B,A)∗, for all A,B and ∗.

However, C is no equivalence relation since it is neither reflexive nor transi-
tive. For example, if ∗ was a closure operation, it could not be reflexive since
C({x,x′},{x,x′})∗ never holds. Nor can it be transitive because even when both
C({a},{b})∗ and C({b},{a′})∗ hold, C({a},{a′})∗ does not.

3.4. Interpretations of C

The most natural interpretation of C is given in the context of logic and is
related to the concept of consistency. We often say that a set of sentences is con-
sistent iff it does not imply any pair of mutually contradictory statements.

Definition 3.7. A is consistent with respect to (the consequence relation) ⊢ iff
there is no α for which both A ⊢ α and A ⊢ ¬α, and inconsistent otherwise.

38Remember that Y X is the set of all functions from X to Y . Hence, ℘U℘U is the set of all
functions from and to sets of U.
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Considering that A⊢ = {α ∣ A ⊢ α}, this definition is equivalent to:

Definition 3.8. A is consistent with respect to ⊢ iff α,¬α ∈ A⊢ holds for no α,
and inconsistent otherwise.

This put us one step away from our logical interpretation of C, which can be
done from the concept of mutual consistency.

Definition 3.9. A and B are mutually consistent with respect to ⊢ iff α,¬α ∈
(A ∪B)⊢ holds for no α, and mutually inconsistent otherwise.

Now, for our interpretation we take U to be the set of statements or proposi-
tions of a formal language, the function ′, the operation of logical negation, and ∗,
a relation of logical consequence (⊢∶ ℘U Ð→ U). From this, it follows that two
sets of sentences A and B are compatible iff there is no α such that A ∪B ⊢ α
and A ∪B ⊢ ¬α. That is, in order for two sets of sentences to be consistent, it is
necessary that the set of their logical consequences be consistent too.

Let us compare this definition with that of Batens and Meheus (2000). Al-
though they initially define compatibility as a relation between sentences and sets
of sentences, they clarify in their footnote 1 that it is a symmetric relation. The fol-
lowing definition sufficiently captures their syntactic definition of compatibility.

Definition 3.10. D(A,B)⊢ iff, for all α, A ⊢ α implies B ⊬ ¬α.

If ⊢ is monotone, then any pair of sets in the extension of C is also in the
extension of D.

Theorem 3.11. If C(A,B)⊢, then D(A,B)⊢.

Proof. Assume C(A,B)⊢ and let A ⊢ α. Since ⊢ is monotone, it follows
that A ∪B ⊢ α. By the same property, it would follow from B ⊢ ¬α
that A ∪B ⊢ ¬α, which is forbidden by C(A,B)⊢. Hence, B ⊬ ¬α. ◻

The converse follows if ⊢ is a classical relation, in which case it follows that it
is monotone and satisfies the compactness theorem.

Theorem 3.12. If D(A,B)⊢, then C(A,B)⊢.

Proof. We assume D(A,B)⊢ and suppose for reductio that (A ∪B)⊢ is incon-
sistent. In that case, the compactness theorem guarantees that (A ∪ B)⊢ has an
inconsistent subset. Since ⊢ is classical, A⊢ is consistent, otherwise A would
imply all formulae, including the negations of tautologies, and since B implies all
tautologies, this would mean that not D(A,B)⊢. We can prove that B is consistent
in a similar way. Hence, in order for (A ∪B)⊢ to be inconsistent it is necessary
that some α be such that A ⊢ α and B ⊢ ¬α, which is forbidden by D(A,B)⊢. ◻
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This proves that (classical) logical compatibility, as defined by Batens and
Meheus, is a model of C. Let us now turn to other interpretations.

In another interpretation, we may speak about incompatible sets of entities
when U is interpreted as the set of all (conceivable) entities. One way to show
this is through answering the question triggering the irresistible force paradox, i.e.
what happens when an unstoppable force meets an immovable object? Let M stand
for the relation “x can move y”. An immovable object can be then characterised
as any y satisfying ∀x(¬xMy). An unstoppable force is instead an object that can
move any object that encounters; that is, an x satisfying ∀y(xMy).

Now, is it possible that an unstoppable force and an immovable object thus
defined can exist in the same possible world? Unless we dismiss the principle
of non contradiction, the answer is clearly no. Otherwise, if there were an object,
say a, such that ∀y(aMy), and another b such that ∀x(¬xMb), it would follow that
both aMb and ¬aMb. In this sense, we can say that the opposite of an immovable
object is an unstoppable force, which makes mutually incompatible any two sets
that can produce both.39

For our last interpretation, it is possible to state that two sets of properties are
compatible or incompatible for a given entity. In order to do this we can treat
entities as sets of properties: the properties that those entities have. This treat-
ment corresponds to Russell’s conception of proper names, for whom “what would
commonly be called a ‘thing’ is nothing but a bundle of coexisting qualities such
as redness, hardness, etc.” (1995, p. 97, my emphasis). For example, if we let B
stand for “x is single” and M for “x is married”, we may say that B′ = M. The
properties of being single and being married are in this sense incompatible, since
all non married persons are single.

3.5. Limitations of Classical Set-Compatibility

It may be argued that against this proposal that C fails to be reflexive, when it
should be so. After all, how can a set be incompatible with itself? Let us notice,
though, that C(A,A)∗ only fails for those A such that x,x′ ∈A∗, for some x.

Corollary 3.13. C(A,A)∗ iff x,x′ ∈A∗, for no x.

In this framework we can state that all sets that are incompatible with them-
selves are unacceptable or inconceivable, depending on the kind of incompatibility
we are talking about. What is more, the existence of self-incompatible sets would
be a feature of this proposal in that it would be a formal way to characterise such
unacceptable and inconceivable sets.

A more important limitation of this approach is that it would make it impossi-
ble to analyse (in)compatibility between inconsistent sets. For example, if we had

39The core of this solution was proposed by Isaac Asimov in his Book of Facts: “The rules of
the game of reason say the question is meaningless and requires no answer. The question: ‘What
would happen if an irresistible force met an immovable body?’ In a universe where one of the above
conditions exists, by definition the other cannot exist” (1979, p. 281).
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an inconsistent (though non trivial) theory T, we would have to conclude that all
sets of observation statements (consistent or otherwise) are incompatible with T.
This would result in T being a priori false instead of falsifiable, which does not
need to be the case as I show in Bartolo Alegre (2019).

As it happens, this situation can be corrected for if we stick Batens’ and
Meheus’ definition. In such case, though, compatibility could not be a symmet-
ric relation, as they want it. One such theory of para-compatibility is a topic for
another paper.

Acknowledgments

This article is part of the project “The testing of inconsistent non-trivial theo-
ries”, funded by the Peruvian Society for Epistemology and Logic.

Bibliography

Asimov, I. (1979). Isaac Asimov’s Book of Facts. Wings Books, New York.
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