No, No and No: the negations and their logicsa

Authors

  • Kherian Gracher Universidad Federal de Santa Catarina

DOI:

https://doi.org/10.22370/sst.2020.8.4928

Keywords:

Negations, Classical Logic, Non-Classical Logics, Philosophy of Logic

Abstract

What are the characteristics of the so-called “classic”, “paraconsistent” and “paracomplete” negations? Can we relate them? What are its syntactic properties? How do they behave semantically? In this paper, we will try to briefly address these discussions. With an introductory character, we will establish and cover some notable aspects of Classical, Paraconsistent and Paracomplete Logics, keeping our attention to the negations that bear the name of these systems. We will also present a fourth system, little known in the specialized field, called “Non-Alethic Calculus”, whose important characteristic is to introduce only one connective of negation (which we will call “non-alethic negation”) that is capable of behaves like classic, paraconsistent or paracomplete negation. In the end, we will present a problem with the possibility of relating these connectors (formally), as is expected to do with Non-Alethic Calculus - and how it is usually done, albeit informally, in the philosophical literature.

References

Arenhart, J. R. B. (2015). Liberating paraconsistency from contradiction. Logica Universalis, 9(4):523–544.

Beziau, J.-Y. (2003). New light on the square of oppositions and its nameless corner. Logical Investigations, 10(2003):218–232.

Brouwer, L. E. J. (1907). On the foundations of mathematics. In Heyting, A.,editor, Collected works: Philosophy and foundations of mathematics, pages 11–101. North-Holland Publishing Company Amsterdam. Thesis, Amsterdam;English translation by Heyting: 1975.

Brouwer, L. E. J. (1908). The unreliability of the logical principles. In Heyting, A., editor, Collected works: Philosophy and foundations of mathematics, pages 107–111. North-Holland Publishing Company Amsterdam, Amsterdam. English translation by Heyting: 1975.

Carroll, L. (1895). What the tortoise said to achilles. Mind, 4(14):278–280.

Church, A. (1996). Introduction to mathematical logic, volume 13. Princeton University Press, Princeton.

da Costa, N. C. A. (1963). Sistemas formais inconsistentes (Inconsistent formal systems, in Portuguese). PhD thesis, Habilitation thesis, Universidade Federal do Paraná, Paraná, Brazil, Curitiba. ´

da Costa, N. C. A. (1989). Logics that are both paraconsistent and paracomplete. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, 83(1):29–32.

da Costa, N. C. A. e Alves, E. H. (1977). A semantical analysis of the calculi cn. Notre Dame J. Formal Logic, 18(4):621–630.

da Costa, N. C. A., Beziau, J.-Y., e Bueno, O. (1998). ´ Elementos de teoria paraconsistente de conjuntos. Centro de Logica, Epistemologia e Historia da Ciência, Campinas. ˆ

da Costa, N. C. A., Krause, D., e Bueno, O. (2007). Paraconsistent logics and paraconsistency. In Jacquette, D., editor, Philosophy of Logic, Handbook of the Philosophy of Science, pages 791 – 911. North-Holland, Amsterdam, 1ed. edition.

da Costa, N. C. A. e Marconi, D. (1986). A note on paracomplete logic. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, 80(7-12):504–509. 104 Kherian Gracher – Não, Não e Não: as negações e suas lógicas ´

De Carvalho, T. F. e D’Ottaviano, I. M. L. (2005). Sobre o infinitésimo e o cálculo diferencial paraconsistente de da costa. ´ Revista Eletrônica Informação e Cognição˜ , 4(1).

Gentzen, G. (1935). Untersuchungen uber das logische schließen. i. ¨ Mathematische zeitschrift, 39(1):176–210.

Gomes, E. e D’Ottaviano, I. M. L. (2017). Para além das colunas de Hercules: uma história da paraconsistência-De Heráclito a Newton da Costa . CLE/Unicamp, Campinas, 1 edition.

Grana, N. (1990a). On a minimal non-alethic logic. Bulletin of the Section of Logic, 19(1):25–28.

Grana, N. (1990b). Sulla teoria delle valutazioni di NCA da Costa. Liguori Editore, Napoli.

Grana, N. (2007). Dalla logica classica alle logiche non-classiche. L’orientale ed., Napoli.

Heyting, A. (1956). Intuitionism: an introduction. North-Holland Publishingn Company, Amsterdam.

Jaskowski, S. (1948). Rachunek zdan dla systemow dedukcyjnych sprzecznych. Studia Societatis Scientiarum Torunensis, Sectio A, 1(5):57–77.

Kleene, S. C. (1971). Introduction to metamathematics. Wolters-Noordhoff Pub, Groningen.

Kleene, S. C. (2002). Mathematical logic. Courier Corporation, Mineola.

Kneale, W. e Kneale, M. (1962). The development of logic. Oxford University Press, Oxford.

Kolmogorov, A. (1925). On the principle of excluded middle. In Van Heijenoort, J., editor, From Frege to Godel: a source book in mathematical logic, 1879-1931, volume 9, pages 414–437. Harvard University Press, Cambridge. English translation by van Heijenoort: 1967.

Krause, D. (2002). Introduc¸ao aos fundamentos axiomáticos da ciência. EPU, São Paulo.

Loparic, A. e da Costa, N. C. A. (1984). Paraconsistency, paracompleteness, and valuations. Logique et analyse, 27(106):119–131.

Marconi, D. (1980). A decision method for the calculus c1. In Proceedings of 3rd Brazilian Conference on Mathematical Logic. São Paulo: Sociedade Brasileira de Lógica, pages 211–223.

Mendelson, E. (1997). Introduction to mathematical logic. Chapman and Hall/CRC, Boca Raton, 4 edition.

Meredith, C. A. (1953). Single axioms for the systems (c, n),(c, o) and (a, n) of the two-valued propositional calculus. The Journal of Computing Systems, 1(3):155–164.

Nicod, J. (1917). A reduction in the number of primitive propositions of logic. In Proceedings of the Cambridge Philosophical Society, volume 19, pages 32–41.

Parsons, T. (2017). The traditional square of opposition. In Zalta, E. N., editor, The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University, summer 2017 edition.

Priest, G. (1979). The logic of paradox. Journal of Philosophical logic, 8(1):219–241.

Priest, G. (2008). An introduction to non-classical logic: From if to is. Cambridge University Press, Cambridge.

Shoenfield, J. R. (1967). Mathematical logic. Addison-Wesley. Slater, B. H. (1995). Paraconsistent logics? Journal of Philosophical logic, 24(4):451–454.

Vasiliev, N. A. (1925). Imaginary (non-aristotelian) logic. In Atti del V congresso Internazionale di Filosofia, pages 107–109

Downloads

Published

2020-12-30

How to Cite

Gracher, K. (2020). No, No and No: the negations and their logicsa. Serie Selección De Textos , 8, 65–105. https://doi.org/10.22370/sst.2020.8.4928